This function plots risk density curves across group - outcome - stat
combinations and split by binary outcome. It currently supports stat_glm.
Usage
aba_plot_risk_density(
  model,
  risk_type = c("absolute", "relative"),
  drop_basic = FALSE
)Arguments
- model
 abaModel. A fitted aba model with
stat_glmtype.- risk_type
 string. Whether to use absolute or relative risk.
- drop_basic
 logical. Whether to drop the basic model or not.
Examples
data <- adnimerge %>% dplyr::filter(VISCODE == 'bl')
# fit glm model with binary outcome variables
model <- data %>% aba_model() %>%
  set_groups(everyone()) %>%
  set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>%
  set_predictors(
    PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl,
    c(PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl)
  ) %>%
  set_stats(
    stat_glm(std.beta = TRUE)
  ) %>%
  fit()
#> [1] "ConvertedToAlzheimers ~ PLASMA_ABETA_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_PTAU181_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_NFL_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_ABETA_bl + PLASMA_PTAU181_bl + PLASMA_NFL_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_ABETA_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_PTAU181_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_NFL_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_ABETA_bl + PLASMA_PTAU181_bl + PLASMA_NFL_bl"
fig <- model %>% aba_plot_risk_density()