This is a helper function which allows you to specify a group in an aba model
that does not have any filtering conditions. This is useful when you want
to specify an aba model with one sub-group of the data but also want to
fit models on the entire data. This function is really only necessary to be
used instead of a call to set_groups
when building an aba model.
Examples
data <- adnimerge %>% dplyr::filter(VISCODE == 'bl')
# fit model with one subgroup (DX_bl) and also the entire data
model <- data %>% aba_model() %>%
set_groups(
everyone(),
DX_bl %in% c('MCI', 'AD')
) %>%
set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>%
set_predictors(PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl) %>%
set_stats(
stat_glm(std.beta = TRUE)
) %>%
fit()
#> [1] "ConvertedToAlzheimers ~ PLASMA_ABETA_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_PTAU181_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_NFL_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_ABETA_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_PTAU181_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_NFL_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_ABETA_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_PTAU181_bl"
#> [1] "ConvertedToAlzheimers ~ PLASMA_NFL_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_ABETA_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_PTAU181_bl"
#> [1] "CSF_ABETA_STATUS_bl ~ PLASMA_NFL_bl"
model_summary <- model %>% aba_summary()